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Abstract 

 

Group and individual solutions are considered for hard problems such as 

satisfiability problem. Time-space trade-off in a structured active memory 

provides means to achieve lower time complexity for solutions of these 

problems. 

 

 

 

 

 



1. Introduction 

Time of computation is the most popular computational complexity measure and an 

important parameter, which implies restrictions on practical computability (tractability) in 

comparison with theoretical/potential computability. In some cases, it is possible to 

reduce time of a solution of a given problem by means utilization of more memory 

(space) for computation and applying group solutions, i.e., when the problem is solved 

for a sequence of parameters. An important peculiarity of this approach is that a 

structured memory (cf., for example, (Burgin, 2003)) is used to achieve such advantages 

in time-space trade-off. 

Here we do not analyze problems of simulation of computations with a structured 

memory by means of a traditional Turing machine with one linear tape. These problems 

will be considered in other works. 

In the last section of the paper, individual solutions are considered. 

 

 

2. Boolean expressions 

Boolean expressions are built from the following elements: 

1.Boolean variables, for example, x, y, z, x1 , y3 , xi etc. 

2.Unary Boolean operator ¬ applied to one expression. 

3.Binary Boolean operators (symbols of Boolean operations) ∨ and ∧ applied to two 

expressions. 

4.Parentheses to group operators and variables, if necessary to alter the default 

precedence of operators: ¬ the highest, then ∧, and finally ∨. 

Boolean operator (symbols of the Boolean operation)  ¬ is called negation, Boolean 

operator (symbols of the Boolean operation)  ∧ is called AND or conjunction, and 

Boolean operator (symbols of the Boolean operation)  ∨ is called OR or disjunction. 

Boolean expressions are built by an inductive process. 

Definition 1. 1. Any Boolean variable is a Boolean expression. 



2. If A is a Boolean expression, then ¬A and ¬(A) are also Boolean 

expressions. 

3.  If A and B are Boolean expressions, then A∨B, A∧B, (A) ∨ (B), 

and (A) ∧ (B) are also Boolean expressions. 

Binary Boolean operators ∨ and ∧ are associative. Thus, they define integral 

operations in the sense of (Burgin and Karasik, 1976). We denote these integral 

operations, which are applied to an arbitrary number of Boolean variables, by the same 

symbols: ∨ and ∧. 

Boolean variables take two values 1 and 0, which are traditionally called truth 

values: 1 denoting True and 0 denoting False. Truth values of Boolean expressions, 

which are equal either to 1 or to 0, are defined by truth tables for Boolean operators and 

by an inductive process when truth values of all variables in this expression are given.  

Definition 2. The set T of truth values for all variables in a Boolean expression A is 

called a truth assignment for this expression.  

When T is given, we define the value A(T) of the Boolean expression A. For 

instance, taking the Boolean expression (x∧¬x∧z∧¬y∧y)∨(u∧¬x∧z∧¬y∧w) and the truth 

assignment T = { u = 1, x = 0, z = 1, y = 0, w = 1}, we have A(T) = 1. 

Definition 3. A truth assignment T for a Boolean expression A satisfies A if A(T) = 

1, i.e., the makes expression A true.  

Definition 4. A Boolean expression A is called satisfiable if there is a truth 

assignment T for A that satisfies A. For instance, x∨¬x, is satisfiable, while x∧¬x, is not 

satisfiable. 

There are two normal forms of Boolean expressions: disjunctive and conjunctive. 

They are defined through the following concepts. 

Definition 5. A literal is either a Boolean variable, e.g., x, or a negated Boolean 

variable, e.g., ¬x. 

Definition 6. A disjunctive clause is a literal or the conjunction of two or more 

literals, e.g., x∨¬x∨z∨¬y∨¬u. 



Definition 7. A conjunctive clause is a literal or the disjunction of two or more 

literals, e.g., x∧¬x∧z∧¬y∧y. 

Definition 8. A Boolean expression A is in the disjunctive normal form or DNF if it 

is the disjunction of conjunctive clauses, e.g., 

(x∧¬x∧z∧¬y∧y)∨(u∧¬x∧¬z∧¬y∧w)∨(x∧u∧w∧v∧y). 

Definition 9. A Boolean expression A is in the conjunctive normal form or CNF if it 

is the conjunction of disjunctive clauses, e.g., 

(x∧¬x∧z∧¬y∧y)∨(u∧¬x∧¬z∧¬y∧w)∨(x∧u∧w∧v∧y). 

Lemma 1. For any Boolean expression A there is an equivalent Boolean expression 

D in the disjunctive normal form. 

Lemma 2. For any Boolean expression A there is an equivalent Boolean expression 

C in the conjunctive normal form. 

It is possible to find proofs, for example, in (Davis and Weyuker, 1983). 

 

 

3. Group Solutions 

An algorithmic problem P is usually a question about some properties of objects 

from an infinite, as a rule, set X. The most popular in theoretical literature algorithmic 

problem is the question if a given word u belongs to a given language L, which, in this 

case, is the set X. 

Definition 10. Solving an algorithmic problem P for one object will be called an 

individual solution. 

Definition 11. Solving an algorithmic problem P for a group of objects from X will 

be called a group solution. 

We assume that the set X is countable and an evaluation function l: X → N into the 

set N of all whole numbers is defined. For instance, any enumeration of X is such an 

evaluation function. 

Definition 12. Solving an algorithmic problem P for all objects u from X with l(u) ≤ 

n for some number n will be called a sequential solution. 



We will show how a sequential solution allows one to decrease time for each 

individual solution. To do this, we take as an evaluation function on the set B of all 

Boolean expressions the length l(A) of a Boolean expression A and consider the popular 

satisfiability problem SAT: 

Given a Boolean expression A, find if it is satisfiable. 

Remark 1. It is possible to consider several definitions of the length l(A) of a 

Boolean expression A: a) l(A) is equal to the number of symbols in A, that is number of 

Boolean variables, Boolean operations, and parentheses; b) l(A) is equal to the number of 

Boolean variables in A; c) l(A) is equal to the number of distinct Boolean variables in A; 

d) l(A) is equal to the number of symbols in the coding of A, as usually Boolean variables 

are coded (for example, x5 is coded by x11111, cf., for example, (Davis and Weyuker, 

1983)) in order to have a finite alphabet Σ for their representation. 

Theorem 1. There is a sequential solution for SAT such that each individual 

solution is obtained in polynomial time.  

Proof. As we are interested in practical aspects of computation, we do not use 

Turing machines for building such algorithm, although it is possible to simulate all 

described procedures and operations by a conventional Turing machine. SAT is 

considered here for all Boolean expressions represented in a finite alphabet Σ with m 

symbols. The computational structure utilized here consists of a (potentially infinite) 

number of copies of the switching element SWm, memory cells that store symbols from 

the alphabet Σ, a separating structure D, and three finite automata Aneg , Adis , and Acon . It 

is possible to consider such structure as a grid automaton (Burgin, 2003a) or realize it as 

a kind of structured memory, an active structured memory containing elements that 

establish connections between cells in the process of inductive Turing machine 

functioning (cf., for example, (Burgin, 2003)). 

The switching element SWm has one inlet and m outlets each of which corresponds 

to one symbol from Σ. It works in the following manner. A symbol a from Σ is given to 

SWm as an input. After this, SWm activates (opens) its outlet that corresponds to the 

symbol a. It is possible to assume that it takes one unit of time to perform a switching or 



if we build SWm using Boolean elements, time of switching is equal to m. Such switching 

elements are described in (Minsky, 1967). 

The automata Aneg , Adis , and Acon realize Boolean operations negation, disjunction, 

and conjunction, correspondingly. Such simple automata are called Boolean elements 

(Minsky, 1967). 

The separating structure D can separate a list of words (items) into two parts, given 

a condition for separation. For instance, by Definition 1, each Boolean expression H with 

l(A) > 1 has one of the following forms: ¬A, ¬(A), A∨B, A∧B, (A) ∨ (B), or (A) ∧ (B). In 

the first two cases, the separating structure D can separate A and ¬. In all other cases, the 

separating structure D can separate A and B. It is possible to realize such separation 

structure D by a simple Turing machine that demands O(n) operations to do separation. 

To optimize this procedure and consequent operations of comparison, it is better to write 

one list on one tape and another list on the second tape. Utilization of Turing machines 

with many tapes does not change polynomial time of computations (Hopcroft,  Motwani, 

and Ullman, 2001). 

We correspond to each Boolean expression A with the length l(A) < n a cell cA of 

the memory. When it found whether A is satisfiable or not, symbol 1 is stored in the cell 

cA in the first case, symbol 0 in the second case, and symbol t when A is a tautology, i.e., 

A is satisfiable by all truth assignments.  

The concept of tautology brings us to another algorithmic problem called tautology 

problem TAU: 

Given a Boolean expression A, find if it is a tautology. 

In addition, a network N of switching elements SWm is built so that it is possible to 

come to the cell cA making l(A) steps when A is given as an input to this and the 

switching element SWm performs switching in one unit of time (in one step). When, as it 

was explained above, the switching element SWm needs m units of time to perform 

switching, then reaching the cell cA demands m⋅l(A) steps where m is a fixed number. 

We prove Theorem 1 by induction in the length of Boolean expressions, finding 

sequential solution to two problems at the same time: SAT and TAU. 



Let l(A) = 1. Then A contains only one Boolean variable and we can check if it is 

satisfiable and if it is a tautology in two steps. 

Let l(A) = n + 1 and assume that for all Boolean expressions D with l(D) < n + 1 

both problems, SAT and TAU, are solved, the cells cD are correctly filled, and the 

network N leading to these cells is built. By Definition 1, A is equal either to ¬D or to 

¬(D) or to D∨H or to D∧H or to (D) ∨ (H) or to (D) ∧ (H). Then in a polynomial 

numbers of steps (polynomial time), we can reach the cells cD and cH, finding whether D 

and H  (in the first two cases, only D) are satisfiable, tautologies or not satisfiable. 

To find satisfiability of A, we use the following properties of Boolean expressions. 

¬D is satisfiable if and only if D is not a tautology. 

D∨H is satisfiable if and only if either D or H or both are satisfiable. 

These properties allow to find satisfiability of A using the automata Aneg , Adis . It 

demands a fixed number of steps, which does not depend on the length of A. 

In the case when A is equal to D∧H, it follows from De Morgan’s laws that A is 

equivalent to the expression ¬(¬D∨¬H). As l(D) < n + 1 and l(H) < n + 1, we can check 

satisfiability of A in the same way as in two previous cases. 

In a similar way, we check if A is a tautology for A is equal either to ¬D or to or to 

D∧H, utilizing the following properties of Boolean expressions. 

D∧H is a tautology if and only if both D and H are tautologies. 

As D is equivalent to ¬¬D, we also have: 

¬D is a tautology if and only if D is not satisfiable.  

For the case when A is equal to D∨H, we use the equivalent formula ¬(¬D∧¬H). 

The principle of induction concludes the proof of Theorem 1. 

This proof also gives us the following result. 

Theorem 2. There is a sequential solution for TAU such that each individual 

solution is obtained in polynomial time. 

Remark 2. The network N built for sequential solutions in the proof of Theorem 1 

grows very fast. Actually, it has exponential speed of growth. As a result Theorem 1 

demonstrates how the time-space trade-off allows one to achieve very high speed of 



computation utilizing very big memory. This technique is similar to the technique used in 

(Burgin, 1999) to demonstrate that inductive Turing machines with a structured memory 

are more efficient than conventional Turing machines. 

Theorem 1 allows us to reconsider the problem of relations between classes P and 

NP. 

Theorem 3 (Cook Theorem, 1971). SAT is NP-complete. 

Now it is possible to find a proof of this theorem in many textbooks (cf., for 

example, (Davis and Weyuker, 1983) or (Hopcroft,  Motwani, and Ullman, 2001)). 

Cook’s Theorem means that all problems in NP can be reduced to SAT. 

Theorem 4 (Cook-Levin Theorem). SAT is in P if and only if NP = P. 

Now it is possible to find a proof of this theorem in some textbooks (cf., for 

example, (Sipser, 1997)). 

Theorems 1 and 4 imply the following result. 

Theorem 5. With respect to sequential solutions, NP = P. 

 

 

4. Individual Solutions 

At first, we consider Boolean expressions in the disjunctive normal form.  

Lemma 3. A conjunctive clause is satisfiable if and only if it does not contain a 

Boolean variable and its negation. 

Indeed, expression x∧¬x is not satisfiable. Consequently, any conjunctive clause that 

contains this expression is not satisfiable. In the case when a conjunctive clause C 

contains only different variables, we take the following truth assignment T: 1 is assigned 

to all variables without negation, while 0 is assigned to all variables with negation. By the 

definition of conjunction, this truth assignment satisfies C. 

Dual to Lemma 3 is the following result. 

Corollary 1. A conjunctive clause is not satisfiable if and only if it contains some 

Boolean variable and its negation. 

The definition of disjunction implies the following result. 



Lemma 4. Boolean expression A is in the disjunctive normal form is satisfiable if and 

only if at least one of its conjunctive clauses is satisfiable. 

These results allow us to treat a restricted version of the satisfiability problem SAT 

that is called the disjunctive satisfiability problem DSAT: 

Given a Boolean expression A in the disjunctive normal form, find if it is satisfiable. 

As above, DSAT is considered here for all Boolean expressions represented by words 

in a finite alphabet Σ with m symbols. 

Theorem 6. There is an individual solution for DSAT obtained in polynomial time. 

Proof. Let us consider a Boolean expression A in the disjunctive normal form that 

contains m conjunctive clauses C1 , C2 , … , Cm and n Boolean variables. In each of these 

clauses, all variables without negation go at the beginning before all variables with 

negation and variables in both groups are ordered according to their indices.  We show 

that there is a polynomial p(n) such that it takes not more than p(r) steps/operations to 

find if an arbitrary conjunctive clause C is satisfiable where r is the number of Boolean 

variables in C. By Lemma 3, it is sufficient to find if C does not contain a Boolean 

variable and its negation. 

To continue, we prove the following statement (E). 

Finding two equal variables in two lists L = { a1 , a2 , … , ak } and M = { b1 , b2 , … , 

bh } of variables xi or asserting that L and M have no equal variables demands r 

operations of comparison with r ≤ 2(d(L) + d(M)) where there are no equal elements in 

each list and d(L) and d(M)) are numbers of items in L and M, correspondingly. We 

assume that all variables xi are ordered by their indices, that is, xi < xj if i < j. This is not a 

limitation because there are sorting algorithms (for example, the QUICK SORT, HEAP 

SORT, and MERGE SORT) that have time complexity of O(n log n) (cf., for example, 

(Knuth, 1973)). 

We prove it by induction in n that is equal to the sum of items in L and M, i.e., n = 

d(L) + d(M). 

The base of induction. 

1. When d(L) = 0 or d(M) = 0, then r = 0 and the statement (E) is true. 

2. When d(L) = d(M) = 1, then r = 1 and the statement (E) is true. 



3. When d(L) = 1 and d(M) = 2, then it is sufficient to compare a1 with b1 and b2 ; 

thus, r = 2 ≤ 1 + 2 = 3 and the statement (E) is true. 

4. When d(L) = 2 and d(M) = 1, everything is symmetric to the previous case. 

A step of induction. 

Assume that the statement (E) is true for n – 1, there are two lists  L = { a1 , a2 , … , 

ak }and M = { b1 , b2 , … , bh }, 1< h ≤  k ≤ n – 1 and a new element a is added to L, 

giving the new list L1 . As there are no equal elements in each list, there are three possible 

cases:   (1) a < a1;   (2) al – 1 < a < al;   (3) ak < a. 

Case 1. Comparison of elements from two lists starts with a. It is compared 

consecutively with b1 , b2 , …  If it found that a = bi for some i ≤ h, then r = i ≤ h < 2(k + 

1 + h) and the statement (E) is true for n. 

If it found that a > bh , then ai > bh for all i, = 1, 2, … , k and it takes r = h 

comparisons to find this. Thus, r = h < 2(k + 1 + h) and the statement (E) is true. 

If it found that a < bi for some 1 ≤ i ≤ h, then it takes i comparisons to find this. After 

this, we have two lists L and M1 to compare and find equal elements where M1 = { bi , bi + 

1 , … , bh }. For them, we have d(L) = k and d(M1) = h – i + 1. By the induction 

assumption, it takes r1 operations of comparison to find two equal variables in these lists 

where r1 ≤ 2(d(L) + d(M1)) = 2(k + h – i + 1) and 1 ≤ i ≤ h. Thus, it takes r operations of 

comparison to find two equal variables in lists L and M where r = r1 + i. Consequently, 

we have r ≤ 2(k + h – i + 1) + i = 2k + 2h – 2i + 2 + i = 2k + 2h + 2 – i = 2(k + h) + 2 – i = 

2(d(L1) + d(M)) + 2 - i and the statement (E) is true when i ≥ 2. 

Now what does it mean that i = 1? It means that a < b1 and we need only one 

comparison to find this. After this, we have two lists L and M to compare and find equal 

elements. By the induction assumption, this demands q operations of comparison where q 

≤ 2(k + h). Then r = q + 1 ≤ 2(k + h) + 1 ≤ 2(k + h + 1) = 2(d(L1) + d(M)) and the 

statement (E) is true for n. 

This completes the proof for the case 1. 

It is possible to reduce cases 2 and 3 to the case 1, taking a1 as a. Thus, by the 

principle of induction, the statement (E) is true for all n. 



It is necessary to remark that when variables xi are coded as words in the alphabet Σ, 

then each comparison demands O(log2 n) steps. However, in this case the length of 

Boolean expressions is also multiples by the same factor. As a result, coding does not 

violate polynomial time of computation. 

Statement (E) implies that there is a polynomial p(n) such that it takes not more than 

p(r) steps/operations (where r is the length l(C) of C, i.e., the number of Boolean 

variables in C ) to find if an arbitrary conjunctive clause C is satisfiable because there is 

linear in time algorithm that separates all variables without negation and all variables 

with negation in C, making two lists for comparison. 

If there is a polynomial p(n) such that it takes not more than p(r) steps/operations to 

find if an arbitrary conjunctive clause C is satisfiable, then for some fixed number d it is 

possible to check satisfiability of an arbitrary conjunctive clause C in time (number of 

steps) that is less than rd.  

Now having a Boolean expression A in the disjunctive normal form that contains m 

conjunctive clauses C1 , C2 , … , Cm and n Boolean variables, we can check satisfiability 

of A by successively checking satisfiability of the conjunctive clauses C1 , C2 , … , Cm . If 

the procedure for the clause Ci demands qi steps, then the procedure for the whole A 

demands q = q1 + q2 + … +  qm + k steps where k is a fixed number. Then q < l(C1)d + 

l(C2)d + … + l(Cm)d + k < (l(C1) + l(C2) + … + l(Cm))d when we take sufficiently big d. 

This concludes the proof of Theorem 1. 

Another restricted version of the satisfiability problem SAT is called the conjunctive 

satisfiability problem CSAT: 

Given a Boolean expression A in the conjunctive normal form, find if it is satisfiable. 

De Morgan’s laws, Theorem 6, and a possibility to go from DNF to CNF in a 

polynomial time imply the following result. 

Theorem 7. There is an individual solution for DSAT obtained in polynomial time. 

As it is proved that it is possible to reduce SAT to CSAT in a polynomial time, we 

have the following result.  

Theorem 8 (Cook’s Theorem, 1971). CSAT is NP-complete. 



Now it is possible to find a proof of this theorem in many textbooks (cf., for example, 

(Hopcroft,  Motwani, and Ullman, 2001)). 

Theorems 6 and 4 imply the following result. 

Theorem 9. NP = P. 

 

5. Conclusion 

Here very rough estimates of computational time are given. Later research will give 

more exact time and space characteristics.  
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